Direct Interaction with Rab11a Targets the Epithelial Ca2+\ Channels TRPV5 and TRPV6 to the Plasma Membrane

Stan F. J. van de Graaf, Qing Chang, Arjen R. Mensenkamp, Joost G. J. Hoenderop, and René J. M. Bindels*

Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Received 16 June 2005/Returned for modification 18 July 2005/Accepted 3 October 2005

TRPV5 and TRPV6 are the most Ca2+-selective members of the transient receptor potential (TRP) family of cation channels and play a pivotal role in the maintenance of Ca2+ balance in the body. However, little is known about the mechanisms controlling the plasma membrane abundance of these channels to regulate epithelial Ca2+ transport. In this study, we demonstrated the direct and specific interaction of GDP-bound Rab11a with TRPV5 and TRPV6. Rab11a colocalized with TRPV5 and TRPV6 in vesicular structures underlying the apical plasma membrane of Ca2+-transporting epithelial cells. This GTPase recognized a conserved stretch in the carboxyl terminus of TRPV5 that is essential for channel trafficking. Furthermore, coexpression of GDP-locked Rab11a with TRPV5 or TRPV6 resulted in significantly decreased Ca2+ uptake, caused by diminished channel cell surface expression. Together, our data demonstrated the important role of Rab11a in the trafficking of TRPV5 and TRPV6. Rab11a exerts this function in a novel fashion, since it operates via direct cargo interaction while in the GDP-bound configuration.

TRPV5 and TRPV6 (TRPV5/6) form a distinct group of highly Ca2+-selective channels belonging to the transient receptor potential (TRP) channel superfamily. This family fulfills a plurality of physiological functions, which vary from phototransduction, nociception, olfaction, and heat and cold sensation to epithelial Ca2+ transport (28). TRPV5 and TRPV6 mediate the rate-limiting luminal influx step of transcellular Ca2+ transport (19, 23). Therefore, understanding the regulation of these channels is of utmost importance for our insight into Ca2+ homeostasis. TRPV5 and TRPV6 display constitutive activity (43), suggesting that channel abundance at the cell surface is of crucial importance for regulation of Ca2+ influx via these channels. It is becoming increasingly evident that channel trafficking is essential in determining the activity of TRP proteins (2, 3, 26, 36, 46). For instance, inducible vesicular translocation and plasma membrane insertion have been described for several TRP channels, i.e., TRPV2, TRPC3, TRPC5, and TRPL. This trafficking process stimulated Ca2+ influx from the extracellular compartment essential to growth factor-induced (3, 26), carbachol-induced (36), or light-induced (46) signaling. However, little is known about the molecular mechanisms involved in trafficking to the plasma membrane of TRP channels in general and of TRPV5 and TRPV6 in particular.

Several protein families have been described as playing key roles in cargo trafficking to and from specific cellular compartments, including the plasma membrane. One of these families consists of the Rab GTases. The ability to act as molecular switches that cycle between GTP- and GDP-bound states underlies the functionality of this family. Many Rab proteins show a distinct subcellular localization, making them ideal candidates to govern the specificity of vesicle trafficking, most likely by cooperatively operating with other proteins (16, 47). Further characterization of the largely elusive mechanism underlying the function of Rab proteins in ion channel trafficking could further contribute to the already enigmatic Rab-dependent regulation of cargo trafficking in the highly organized cellular transport machinery.

The aim of this study was to identify regulatory proteins directly interacting with TRPV5 or TRPV6. Using biochemical, histological, and functional analyses, we demonstrate a novel operation mode for Rab11a in the regulation of TRPV5 and TRPV6 trafficking to the plasma membrane requiring direct interaction with these cargo molecules.

MATERIALS AND METHODS

DNA constructs and cRNA synthesis. The carboxyl termini of mouse TRPV5 and TRPV6 and deletion mutants of TRPV5 in pGEX6p-2 were obtained as described previously (41). A vesicular stomatitis virus (VSV) tag-encoding oligonucleotide duplex (sense, 5‘-CATGGCATACACTGATATCGAAATGAA CCGCCCTGGGTTAAGGGCGCGCTT-3‘; and antisense, 5‘-CTAGAAAGGCGCC CCTATCCAGGGGGTGTCCTTCCGTAATCAGTGATGAC-3‘) was inserted into the Ncol/XbaI restriction sites of the pTLN oocyte expression vector. Rab11a was cloned into this construct by PCR (forward primer, 5‘-GGCGCGCC CCTTGGCACCAGCAGCAGA-3‘; and reverse primer, 5‘-GGTCAGAG TTTGGCGGTGGTTCATCTCGA-3‘) with the pACT2 construct as a template and was subsequently subcloned into pGEX2p (Amersham Biosciences, Uppsala, Sweden) and pCB7 (4). MluI and Sall sites were introduced into the lentivirus transfer vector pLV-CMV-GFP (35) by site-directed mutagenesis replacing the green fluorescent protein (GFP) stop codon. Rab11aS25N was subsequently cloned into these sites by PCR using the forward primer 5‘-AGCCCGCGTCGGCGACGCGGAG-3‘ and the reverse primer 5‘-GACGGATCCGTGACTATGTCTGACAGAAGT-3‘ and the reverse primer 5‘-AAGCTT CGGGGGGATGGGGGCCTGTCCACCC-3‘; and antisense, 5‘-CTAGAAAGGCGCC CCTATCCAGGGGGTGTCCTTCCGTAATCAGTGATGAC-3‘; and reverse primer, 5‘-CCGGCC TGGGAAGGATGCGGCGGGGCGCTCCA-3‘. The construct encoding DoRed-fused Rab11a was generously provided by U. Rescher (University of Muenster, Muenster, Germany) and S20V and S25N mutants were subsequently obtained by site-directed mutagenesis. All constructs were verified by sequence analysis. Oocyte expres-
sion constructs were linearized, and TRPV5, TRPV6, and Rab11a cRNA were synthesized in vitro with Sp6 RNA polymerase as described previously (22).

Yeast two-hybrid system. Yeast was subsequently transformed with pAS-1 containing the TRPV6 carboxyl terminus, and a mouse kidney cDNA library (Clontech, Palo Alto, CA) was present in the pACT2 vector. Screening of the library was performed as described previously (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.

GST-TRPV5/6 fusion protein and interaction assays. pGEXOp-2 constructs were transformed in *Escherichia coli* BL21, and glutathione S-transferase (GST) fusion proteins were expressed and purified according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ). GST-Rab proteins were prepared in GTP- or GDP-bound conformation as previously described (11). Rab11a S25N was cleaved from GST with Preclission protease (Amersham Bio- prepared in GTP- or GDP-bound conformation as previously described (41). Yeast two-hybrid results were confirmed using purified library plasmids, and negative controls were performed by replacing a binding partner by either a pAS-1 construct containing the amino terminus (amino acids 1 to 53) of rat gamma epithelial Na⁺ channel (γENaC) or the empty pACT2 vector.
Subsequently, the specificity for Rab11a was determined using distant members of the Rab family of GTPases. Rab22b S19N and Rab7 T22N, both GTP-binding-deficient Rab proteins, did not bind TRPV5 and TRPV6, indicating the specificity of the interaction of TRPV5/6 with Rab11a (Fig. 2A). GST, GST-fused TRPV5, and GST-fused TRPV6 were present in equal amounts, as demonstrated by Coomassie staining (Fig. 2B). GST alone did not show any binding under these conditions. To investigate whether the association between Rab11a and the epithelial Ca\(^{2+}\)/H\(^{+}\) channels was direct, recombinant Rab11a S25N was purified as a GST fusion protein and subsequently cleaved from GST using PreScission protease. The purity of recombinant Rab11a was analyzed by Coomassie staining (Fig. 2C, right). Purified Rab11a S25N displayed similar TRPV5-binding efficiencies (Fig. 2C), demonstrating that the interaction was direct and did not require additional proteins.

Colocalization of Rab11a with TRPV5 and TRPV6. Subsequently, we examined whether TRPV5 colocalized with WT Rab11a and the GTP- and GDP-locked Rab11a mutants. To this end, HeLa cells were transiently transfected with constructs encoding EGFP-tagged TRPV5 and DsRed-tagged Rab11a (WT, S20V, or S25N) and the subcellular localization of TRPV5 and Rab11a was visualized by confocal laser scanning microscopy. TRPV5 was clearly present in many vesicles distributed throughout the cytoplasm, where it showed prominent colocalization with wild-type Rab11a (Fig. 3A) and to a lesser extent in the endoplasmic reticulum. Similarly, TRPV5 also colocalized with Rab11a S20V, the GTP-locked form of Rab11a, whereas no binding to Rab11a S20V was observed. (E) Coomassie staining of the gels demonstrating similar amounts of GST, GST fused to the carboxyl terminus of TRPV5, or GST fused to the carboxyl terminus of TRPV6. (F and G) *Xenopus laevis* oocytes were injected with Rab11a S25N or coinjected with HA-tagged TRPV5 and Rab11a S25N cRNAs. Oocyte lysates were subjected to immunoprecipitation using monoclonal anti-HA antibodies. The precipitated sample was immunoblotted for the presence of TRPV5 (F) or coprecipitated Rab11a (G).
cells exhibited net apical-to-basolateral Ca\(^{2+}\) transport, indicating the integrity and functionality of the preparation. Ca\(^{2+}\) transport was blocked (from 63 ± 3 to 5 ± 2 nmol/cm\(^2\)/h) by ruthenium red, a polycationic dye that blocks TRPV5 activity with an 50% inhibitory concentration of 111 nM (Fig. 4F) (30). TRPV5 staining localized predominantly to the apical side of the cell and was absent from the basolateral membrane that is in line with its physiological function as apical Ca\(^{2+}\) influx channel (Fig. 4E). Importantly, TRPV5 immunopositive staining overlapped with that of Rab11a in vesicular structures (Fig. 4C). Analysis of z-stacks of these cells (Fig. 4D) combined with plasma membrane staining (Fig. 4E) confirmed the colocalization of Rab11a and TRPV5 in a subapical region. Thus, these findings further substantiated the physiological relevance of the interaction between the epithelial Ca\(^{2+}\) channels and Rab11a.

Characterization of the Rab11a-binding site in TRPV5. To map the Rab11a-binding site, a series of deletion mutants of the carboxyl terminus of TRPV5 was constructed as depicted in Fig. 5A. These mutants were expressed and purified as GST fusion proteins and incubated with in vitro-translated Rab11a S25N. Rab11a interacted with TRPV5 truncates up to position 601, narrowing the binding site to a helical region of 29 amino acids. Two truncated TRPV5 mutants, containing stop codons at position 596 or 591, failed to coprecipitate Rab11a (Fig. 5B). Therefore, the region between amino acids 595 and 601 of TRPV5 was essential for Rab11a binding. Subsequently, this region, corresponding to the amino acid sequence MLERK, was mutated into glycines (designated 595-5G-601), and the binding of Rab11a was reanalyzed by GST pull-down. The interaction between Rab11a and the mutant 595-5G-601 TRPV5 was significantly decreased, further indicating the relevance of this MLERK domain for Rab11a interaction (Fig. 5B). Of note, the binding region for the previously identified TRPV5-interacting protein S100A10 is located upstream of this Rab11a-binding region (41); the T593A (amino acid numbering according to the mouse sequence; accession number NP001007573) mutation in TRPV5, which is crucial for S100A10 binding, had no effect on binding of Rab11a (data not shown), indicating the specificity of the identified region. GST alone did not bind Rab11a, and in vitro-translated Rab22b did not show any affinity for TRPV5 under these conditions (Fig. 5C). Importantly, the diminished binding of Rab11a to the TRPV5 595-5G-601 mutant was accompanied by an impaired trafficking of TRPV5, as was demonstrated by immunocytochemical analysis of Xenopus laevis oocytes injected with TRPV5 wild-type or 595-5G-601 mutant cRNA. Wild-type channels showed robust plasma membrane localization, whereas the binding-deficient mutant was mainly localized to the cytoplasm (Fig. 5E). We also mutated this region in TRPV6 (600-5G-607) and investigated whether similar trafficking defects were displayed. In line with our results with TRPV5, wild-type TRPV6 showed significant plasma membrane staining, whereas TRPV6 600-5G-607 was absent from the plasma membrane but accumulated intracellularly (Fig. 5E). The functional role of Rab11a binding was subsequently investigated by \(^{45}\)Ca\(^{2+}\) uptake measurements with oocytes. Expression of wild-type TRPV5 resulted in an 5-fold increase in the Ca\(^{2+}\) uptake compared to noninjected oocytes, whereas expression of the TRPV5 595-5G-601 mutant resulted in a Ca\(^{2+}\) uptake that was indistinguishable from that of noninjected oocytes (Fig. 5F).

FIG. 2. (A) VSV-tagged Rab11a S25N or Rab22b S19N and myc-tagged Rab7 T22N were transiently expressed in HEK293 cells and incubated with GST or GST fused to the carboxyl terminus of TRPV5 or TRPV6, and interactions were analyzed by immunoblot analysis using monoclonal anti-VSV or anti-Myc. (B) Coomassie staining of the precipitated GST fusion proteins, demonstrating equal amounts of GST or GST fused to the carboxyl terminus of TRPV5 or TRPV6. (C) Rab11a S25N was expressed in bacteria as a GST fusion protein, GST was cleaved using Precision protease, and purified Rab11a S25N was incubated with immobilized and purified GST-TRPV5. Bound Rab11a was detected by immunoblot analyses using anti-Rab11 antibodies (left). The integrity and purity of Rab11a S25N were verified by Coomassie staining (right).
with TRPV6 and the TRPV6 600-G-607 mutant (Fig. 5F). The functional significance of the identified Rab11a-binding site was further underscored by sequence conservation among all members of the epithelial Ca\(^{2+}\) channels TRPV5 and TRPV6 identified so far (Fig. 5D), ranging from humans to zebra fish (Danio rerio).

Rab11a S25N inhibited TRPV5- and TRPV6-mediated Ca\(^{2+}\) influx. The effect of Rab11a expression on TRPV5 and TRPV6 activity at the plasma membrane was determined with *Xenopus laevis* oocytes by a \(^{45}\)Ca\(^{2+}\) uptake assay. Expression of TRPV5 and TRPV6 resulted in an ∼5-fold increase of Ca\(^{2+}\) influx compared to noninjected oocytes (Fig. 6A and B). Coexpression of Rab11a S25N significantly decreased the TRPV5- and TRPV6-mediated Ca\(^{2+}\) influx to a level that was indistinguishable from that of noninjected oocytes (Fig. 6A and B). Coexpression of Rab11a S20V or Rab22b S19N had no significant effect on TRPV5 and TRPV6 activity. Ca\(^{2+}\) uptake in oocytes expressing only Rab11a S20V or Rab11a S25N was no different from that of noninjected oocytes (0.49 ± 0.07 and 0.42 ± 0.05 versus 0.44 ± 0.04 pmol Ca\(^{2+}\)/oocyte/h, respectively). The effect of Rab11a S25N was consistent with a role for Rab11a in TRPV5 and TRPV6 targeting to the plasma membrane. Therefore, we investigated trafficking of TRPV5 in *Xenopus laevis* oocytes. A distinct band at the size of complex glycosylated
TRPV5 (24) was observed by immunoblot analysis of plasma membrane preparations of TRPV5-injected oocytes (Fig. 6C). The core-glycosylated form of TRPV5 was not detectable, indicating the purity of the plasma membrane preparation obtained by this method (25). Importantly, TRPV5 could not be detected in the plasma membrane of oocytes coexpressing TRPV5 and Rab11a S25N, whereas coinjection of Rab11a S20V resulted in normal plasma membrane localization of TRPV5 (Fig. 6C). In all conditions, TRPV5 was produced and glycosylated to an extent similar to that in the absence of mutant Rab11a protein (Fig. 6D). These results were verified by immunocytochemical analysis of TRPV5- and Rab11a-expressing oocytes. Immunopositive staining for TRPV5 was predominantly localized along the plasma membrane (Fig. 6E). Coinjection of TRPV5 with Rab11a S25N resulted in largely dispersed intracellular immunopositive staining with virtually no staining of TRPV5 at the plasma membrane, while expression of Rab11 S20V had no effect (Fig. 6E). The role of Rab11a in the regulation of TRPV5 was further investigated by using primary cultures of CNT/CCD cells grown to confluence on permeable filter supports. Lentivirus-mediated expression of GFP-fused Rab11a S25N or GFP only was verified by confocal laser scanning microscopy (Fig. 7A). GFP-Rab11a S25N displayed a tubulovesicular localization, while GFP showed a predominant diffuse cytosolic pattern. Rab11a S25N partially colocalized with endogenous TRPV5, whereas GFP alone showed no colocalization (Fig. 7A), in line with the colocalization results obtained with HeLa cells (Fig. 3). The expression of GFP and GFP-fused Rab11a S25N was further confirmed by immunoblot analysis using anti-GFP antibodies showing single bands of comparable intensity at the expected height for GFP and GFP-fused Rab11a S25N (Fig. 7B). Importantly, transcellular Ca$^{2+}$ transport showed a significant and dose-dependent inhibition in Rab11a S25N-expressing primary CNT-CCD monolayers, compared to monolayers expressing GFP only. Viral infections did not affect the transepithelial resistance in

FIG. 5. Rab11a-binding site in TRPV5. (A) GST fusion proteins containing different portions of the carboxyl terminus of mouse TRPV5 were constructed according to the schematic drawing. (B) These proteins were immobilized on glutathione-Sepharose 4B beads and then incubated with in vitro-translated Rab11a S25N. Interaction of Rab11a with the GST fusion proteins was determined by autoradiography. The region between amino acids 595 and 601 was essential for binding. Mutation of this region (595-5G-601) diminished the interaction with Rab11a (right). (C) GST or GST fused to the carboxyl terminus of TRPV5 and immobilized on glutathione-Sepharose 4B beads was incubated with in vitro-translated Rab22b; precipitated proteins were analyzed by autoradiography. Rab22b did not associate with TRPV5, demonstrating the specificity of the Rab11a binding. (D) TRPV5 and TRPV6 sequences, varying from humans to zebra fish, were aligned by the Clustal method, demonstrating complete conservation of the Rab11a-binding site during evolution. (E) cRNA encoding full-length TRPV5 or TRPV6 was injected in Xenopus laevis oocytes, and the localization of the channel was investigated by immunocytochemistry. Mutation of five amino acids in the Rab11a-binding region resulted in significantly disturbed TRPV5 trafficking, resulting in a small number of channels at the cell surface. (F) Accordingly, TRPV5-mediated 45Ca$^{2+}$ uptake was significantly decreased in Xenopus laevis oocytes injected with TRPV5 595-5G-601, compared to oocytes injected with wild-type TRPV5. Similar functional results were obtained between the wild type and 600-5G-607 mutant TRPV6. Bar, 25 μm.
either condition, confirming the integrity of the monolayer (not shown). Furthermore, no differences in TRPV5 expression were observed in infected versus noninfected cells. Therefore, the results obtained with the renal primary cultures were consistent with our observations using TRPV5-expressing X. laevis oocytes and further substantiated the role of Rab11a in the targeting of TRPV5 to the plasma membrane.

DISCUSSION

The present study demonstrates a novel function of Rab11a mediating trafficking of TRPV5 and TRPV6 to the plasma membrane by direct cargo interaction. First, GDP-bound Rab11a directly and specifically binds to a conserved stretch in the carboxyl terminus of TRPV5 and TRPV6, demonstrating a unique interaction between a TRP channel and a GDP-bound Rab. Second, the epithelial Ca²⁺ channels colocalize with Rab11a in subapical vesicles present in Ca²⁺-transporting cells of the kidney. Third, functional data suggest that cargo interaction (in the GDP status) and subsequent GTP binding are required for Rab11a-mediated TRPV5 and TRPV6 targeting to the plasma membrane.

GDP-bound Rab11a as a novel TRPV5- and TRPV6-interacting protein. Our study describes for the first time cargo proteins that interact directly with Rab11a. Although Rab proteins are known to interact with a large variety of effectors (17, 38, 47), only a few studies have demonstrated direct interactions between a Rab GTPase and a cargo molecule (37). Recently, it was reported that the polymeric immunoglobulin A (Ig) receptor (pIgR) interacts directly with Rab3b, controlling IgA-stimulated transcytosis (42). The second example is the interaction between Rab5a and the angiotensin II type 1A receptor (34). Finally, Pfeffer and coworkers were the first to demonstrate a mechanism in which Rab proteins interact indirectly with cargo. They showed that a ternary complex of Rab9, mannose-6-phosphate receptor, and the adaptor protein TIP47 plays a role in the vesicular transport of the mannose-
6-phosphate receptor (6). Direct interaction of Rabs with cargo could provide further insight into the mechanisms of Rab localization and function. The recruitment of Rabs to specific membranes is mediated by the Rab carboxyl terminus (9). This suggests the involvement of Rab-interacting proteins in the membrane localization of Rab proteins. An intriguing possibility is that certain Rab accessory proteins are cargo themselves, contributing to the membrane localization of specific Rab proteins. As TRPV5 and TRPV6 preferentially interacted with Rab11a in its inactive configuration, TRPV5 and TRPV6 may support the recruitment of Rab11a to specific membrane compartments in Ca^{2+}-transporting epithelia. Similarly, it was suggested that the direct interaction between Rab3b and pIgR provides a partial explanation for the specificity of binding of Rab3b to pIgR-containing vesicles (42). Furthermore, direct interaction of Rabs with cargo could contribute to the targeting of proteins to their proper destination. Direct association of TRPV5/6 with Rab11a could support the translocation of these channels into recycling endosomes and thereby constitute the “delivery machinery” destined to transport these channels to the apical plasma membrane. Identification of additional novel cargo that interacts with Rab proteins could provide means to further dissect the mechanism of Rab activity and thus a novel insight into the molecular machinery of membrane traffic.

Colocalization of Rab11a and TRPV5 and TRPV6. Further evidence for a role of Rab11a in TRPV5 and TRPV6 regulation is the predominant colocalization of Rab11a with TRPV5 or TRPV6 along the apical domain of the distal convoluted tubules, CNT and CCD, corroborating previous Rab11 localization data from Goldenring et al. (15). Furthermore, Rab11a is present along the luminal membrane of enterocytes, where TRPV6 expression is prominent (15, 48). The specific expression pattern in kidney and intestine supports a role for Rab11a in the regulation of TRPV5 and TRPV6. At the subcellular level, Rab11a also shows significant colocalization with TRPV5 in subapical vesicular structures. Previous functional and histological studies have identified Rab11-positive structures as (apical) recycling endosomes, which are specialized compartments involved in (polar) sorting of endocytosed membrane proteins (5, 7, 27, 31, 45). Furthermore, Rab11a has been demonstrated to play a role in transport from the trans-Golgi network to the plasma membrane (33, 40). Ang and coworkers have recently demonstrated a role for recycling endosomes as intermediates in the transport from the Golgi membrane to the plasma membrane (1). Our study is the first to indicate that cargo molecules that travel via these Rab11-enriched structures can be directly bound to Rab11a.

Rab11a binding targets TRPV5 and TRPV6 to the plasma membrane. The unique role of Rab11a in targeting of TRPV5 and TRPV6 to the plasma membrane by direct interaction to the channel was further established by combined biochemical, functional, and immunocytochemical analyses. To identify the direct consequences of Rab11a association with the epithelial Ca^{2+} channel, we mutated the Rab11a-binding site in TRPV5 and TRPV6. The interaction between Rab11a and TRPV5/6 was localized to a helical stretch in the carboxyl terminus. A stretch of five amino acids at position 595 to 601 within the Rab11a-binding site of TRPV5 was demonstrated to be required for Rab11a binding. Moreover, this region is conserved among all identified species of TRPV5 and TRPV6. Mutations in this stretch resulted in a lack of TRPV5- and TRPV6-mediated Ca^{2+} influx, based on defective trafficking of TRPV5 and TRPV6, in line with an essential role for Rab11a in targeting TRPV5/6 to the plasma membrane. However, as this stretch has been implicated in the interaction of TRPV5 with 80K-H, a Ca^{2+}-binding protein (14) and in TRPV5 channel assembly (8), Rab11a-independent factors cannot be excluded to explain the impaired trafficking of this mutant. Therefore, we further substantiated the functional role of Rab11a in the trafficking of TRPV5 and TRPV6 using Rab11a mutants in *Xenopus* oocytes and primary cultures of Ca^{2+}-transporting cells from rabbit kidney. GDP-locked Rab11a expression strongly reduced the TRPV5- and TRPV6-mediated Ca^{2+} influx, resulting from a significantly decreased number of Ca^{2+} channels at the plasma membrane. This effect can be explained in two ways. First, in analogy with dominant negative Ras mutants (13), Rab11a S25N could sequester a Rab11a guanine nucleotide exchange factor (GEF) and thereby block the activation of Rabs. However, expression of another dominant negative Rab protein (Rab22b S19N) did not inhibit TRPV5/6 activity. This suggests either that Rab GEF inhibition is not essential to block TRPV5/6 trafficking or that Rab11a S25N associates with a specific GEF that does not bind Rab22b S19N. It is currently unknown which protein operates as a GEF for Rab11a and how promiscuous this GEF is. Rab11a S20V has a lower affinity for Rab GEFs (10, 45), explaining the lack of functional consequences of expression of

![FIG. 8. Schematic model depicting the role of Rab11a in TRPV5 and TRPV6 trafficking. Rab11a-GDP interacts directly with TRPV5 or TRPV6 in intracellular vesicles. Subsequently, Rab11a is docked at the vesicle, and GDP is exchanged for GTP. Several Rab effectors stabilize Rab11a in the membrane in the GTP-bound state. At this state, Rab11a no longer interacts with TRPV5 or TRPV6. The vesicle is subsequently targeted to the plasma membrane, where its fusion enables TRPV5- and TRPV6-mediated Ca^{2+} influx.](image-url)
this mutant. Second, the dominant negative effect of Rab11a S25N could be explained as a competition with endogenous Rab11a for the Rab11a-binding site in TRPV5/6. Because Rab11a S25N cannot bind GTP, it will not be activated, and this impairs TRPV5/6 trafficking to the plasma membrane. Rab11a S20V cannot compete with endogenous Rab11a for TRPV5/6 binding, explaining the lack of function of this mutant. Together, these data indicate that cargo interaction (in the GDP status), as well as subsequent GTP binding, is required for Rab11a-mediated TRPV5/6 trafficking. Our findings show a novel interaction between a Rab GTPase and TRP channels and point to a unique role for Rab11a in the regulation of TRPV5/6 channel trafficking.

We propose the following model for the role of Rab11a in trafficking of TRPV5 and TRPV6 (Fig. 8). Initially, cytosolic GDP-bound Rab11a specifically interacts with TRPV5 and TRPV6 in a cytoplasmic compartment. Subsequently, Rab11a is docked to this compartment, while GDP is exchanged with GTP. At this state, Rab11a effectors will associate, and Rab11a no longer interacts with TRPV5 and TRPV6. Finally, active GTP-bound Rab11a mediates transport of TRPV5- and TRPV6-containing structures to the plasma membrane, where membrane fusion allows Ca\(^{2+}\) influx.

In conclusion, our data provide new insight into the molecular machinery of TRP channel trafficking via direct interaction between a Rab GTPase and apically targeted cargo. This association is involved in the physiological regulation of TRPV5 and TRPV6 cell surface abundance, a critical component in Ca\(^{2+}\) homeostasis. The future challenge is to find the signals that modulate the interaction of TRPV5/6 and Rab11a to fine-tune cell surface expression of these epithelial channels.

ACKNOWLEDGMENTS

We thank R. C. Hoeben and L. Boele (LUMC, Leiden, The Netherlands) for kindly providing the lentivirus transfer vector and advice on virus production and infections and O. Brouwers for excellent technical assistance. We are grateful to J. Fransen (NCMLS, Nijmegen, The Netherlands) for discussions and J. Neefjes (NKI, Amsterdam, The Netherlands) for kindly providing the lentivirus transfer vector and advice. N. van Os, P. H. Willems, and R. J. Bindels, 2003. The TRP channels, a remarkably functional family. J. Cell Biol. 168:595–598.

REFERENCES

